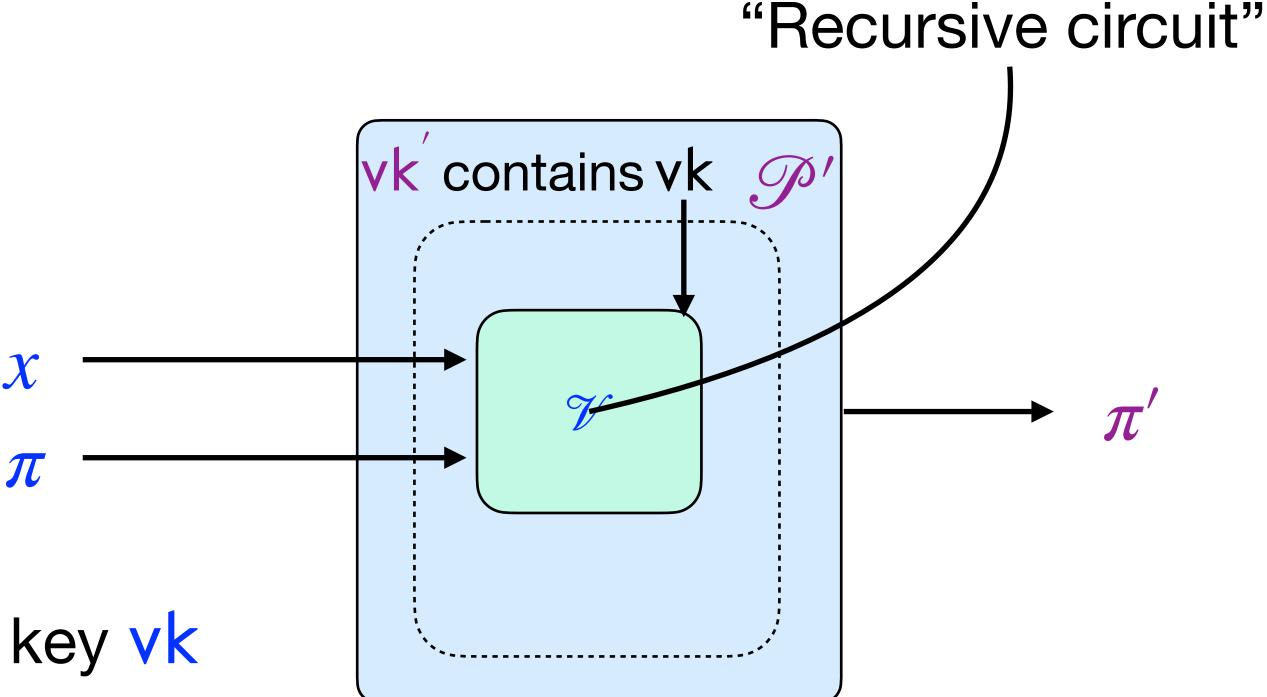
Recursive Proofs and Accumulation: Definitions, Applications, Security and Constructions

Benedikt Bünz (NYU)

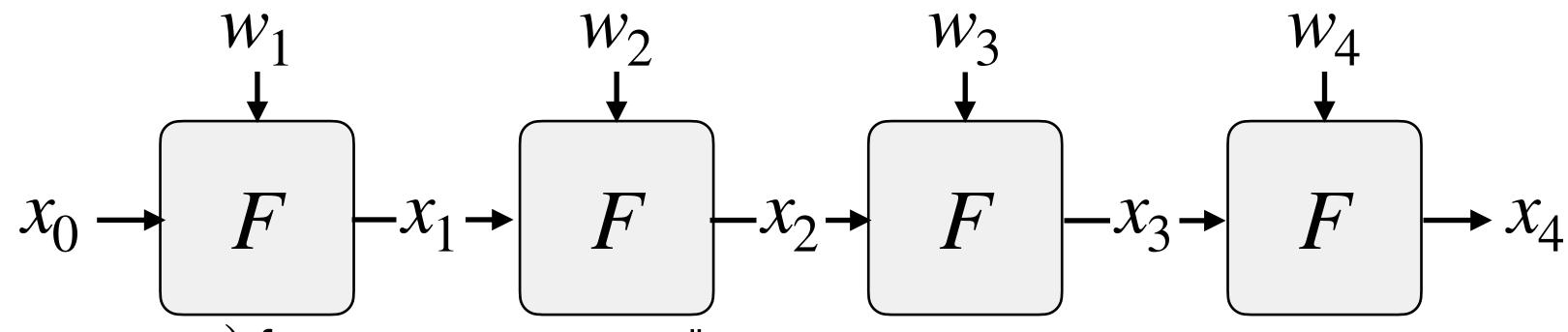
Recursive Proofs [Val08]

- Two SNARK systems $(\mathcal{P}, \mathcal{V})$, $(\mathcal{P}', \mathcal{V}')$
 - Sometimes they are the same
- Proves that
 - it knows a proof π for a statement x
 - In a language indexed by a verification key vk
 - Such that \mathcal{V} accepts π , for statement x and verification key vk
- Knowledge soundness of $(\mathcal{P}', \mathcal{V}')$ implies we can extract π



Motivation 1:

Goal: Prove sequential computations



• " $x_t = F^t(x_0; w_1, ..., w_t)$ for some $w_1, ..., w_t$ "

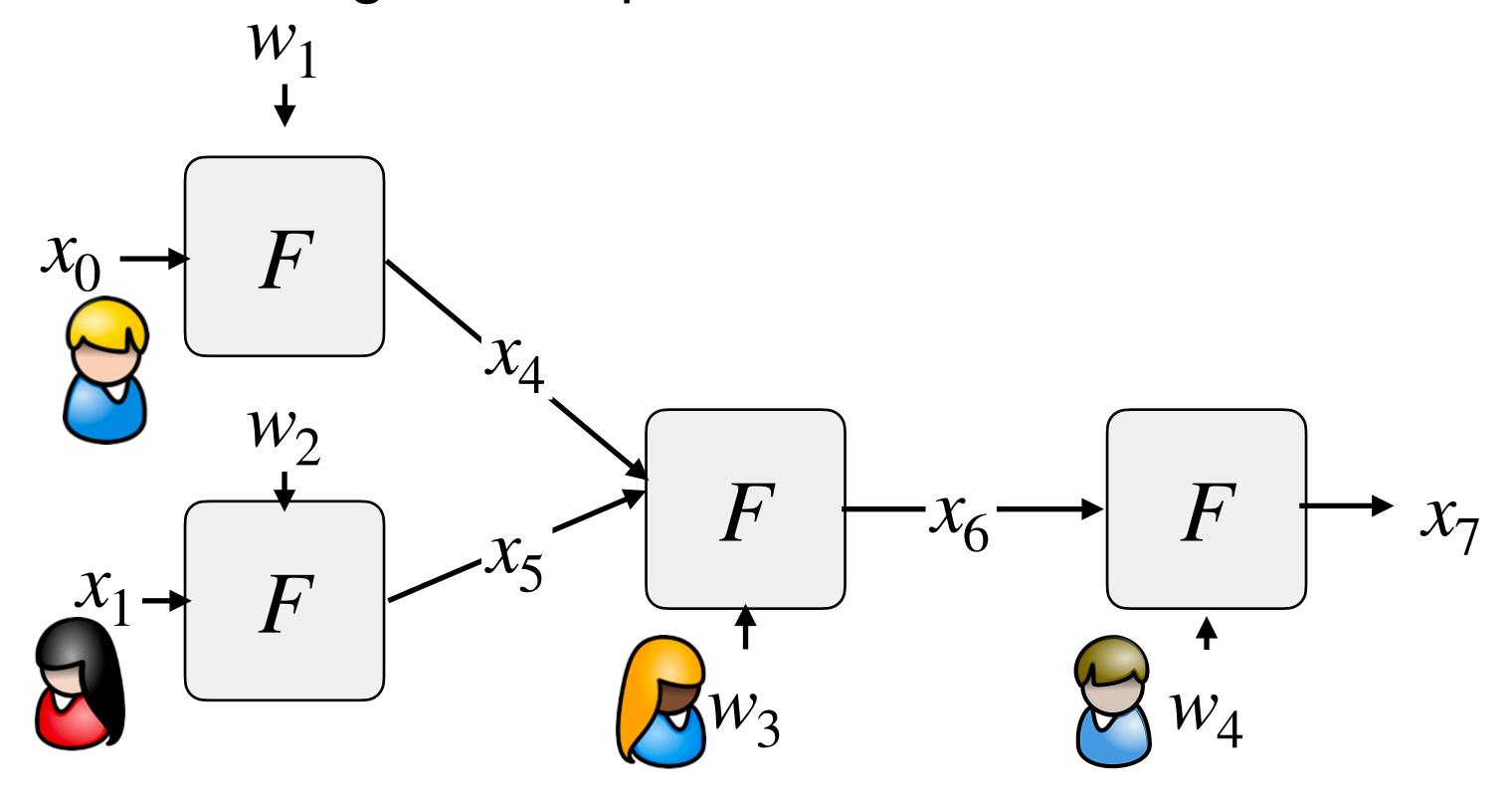
Naive solution: Monolithic proof

$$F^{t}(x_0; w_0, ..., w_{t-1}) = x_t$$

- Not memory-efficient
- Super-linear prover is super-linear in $t \cdot |F|$
- Additional steps requires reproving everything

Motivation 2

Goal: Handing off computation

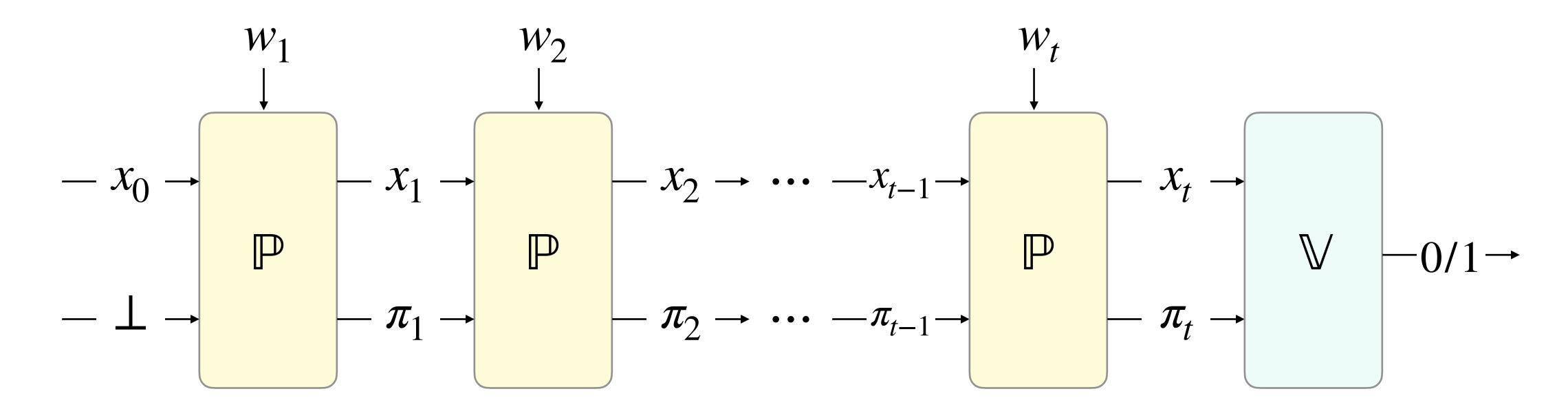


• Each party wants to verify the inputs. Some wants to check the entire computation

Naive solution: Each party creates a proof, attach all proofs.

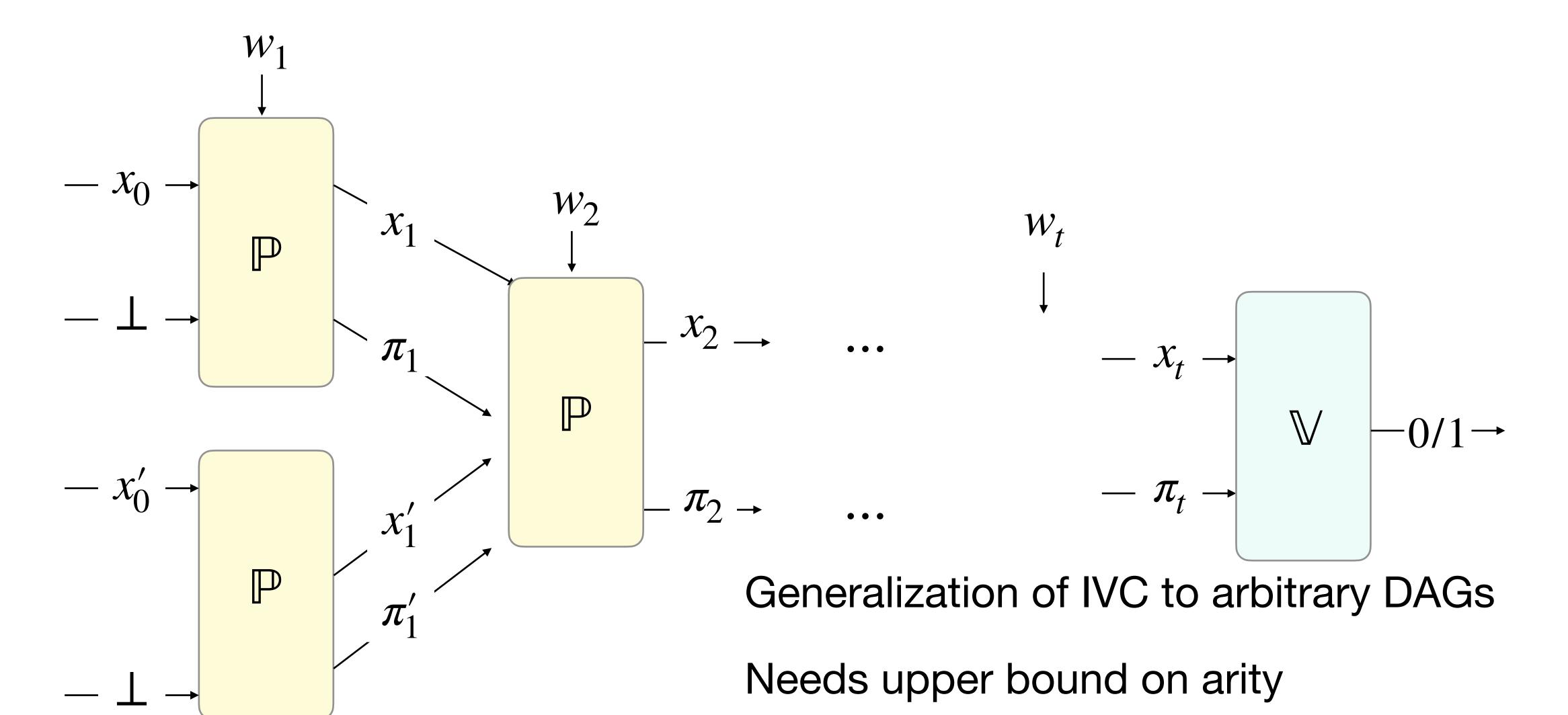
Linear in number of steps

Incrementally verifiable computation [ValO8]



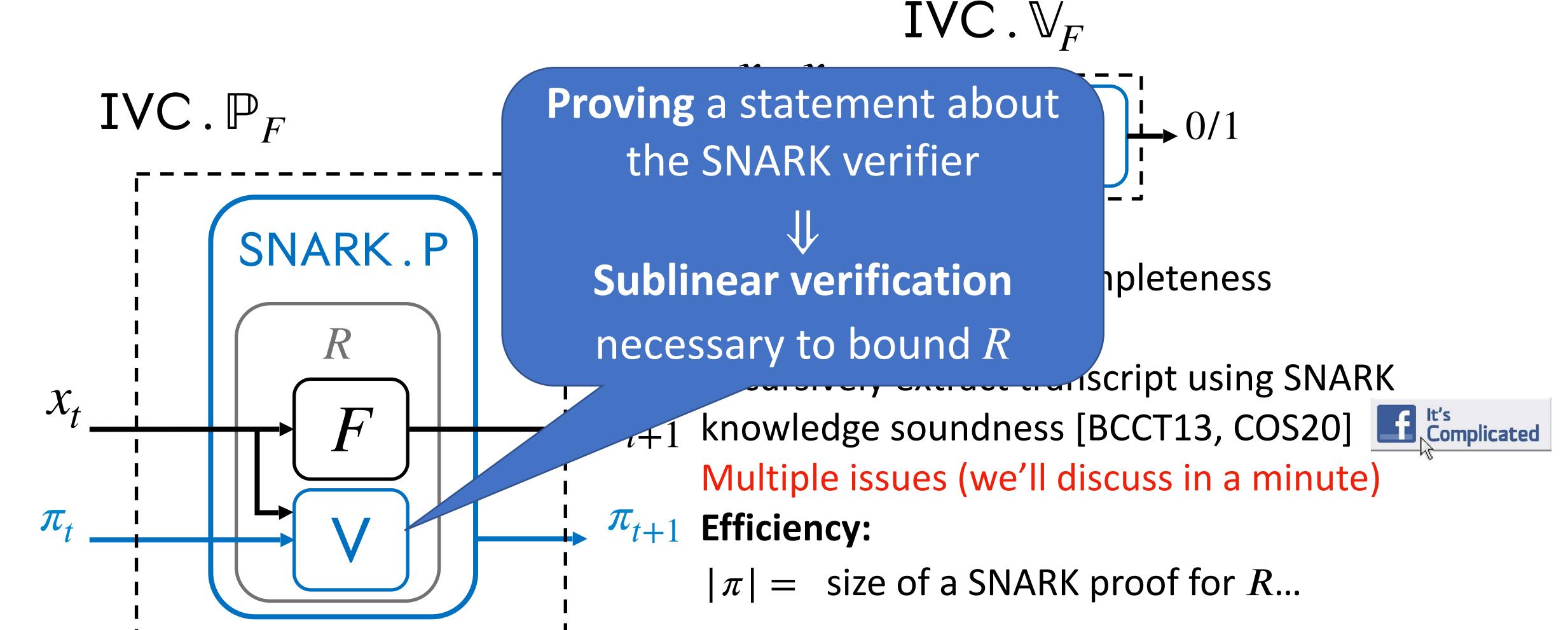
- Completeness: Given valid proof π_{i-1} for x_{i-1} , $\mathbb P$ generates a valid proof π_i for $x_i := F(x_{i-1}, w_i)$
- **Knowledge soundness:** Given valid proof π_t for x_t , extract witnesses w_1, \ldots, w_t such that $x_t = F^t(x_0; w_1, \ldots, w_t)$
- Efficiency: Proof size and prover/verifier runtime should be independent of *t* IVC for P can be build from batch arguments[KPY19,DGKV22, PP23] (we will focus on NP)

Proof Carrying Data (PCD) [CT10,BCCT13]



IVC from recursive composition of SNARKs

[BCCT13, COS20]



Application 3: Property preserving SNARKs

Goal: Improving SNARK prover properties

SNARK A'

- Fast sequential Prover
- Non parallel
- Large memory
- Large CRS
- "Large" verifier

- Fast parallel Prover
- Constant memory
- Constant CRS
- Constant size verifier

Solution: Break up function F into T uniform steps F' of size $\frac{|F|}{T}$.

- Build binary PCD tree of depth log(T) for predicate F'.
- T parallelism, memory, CRS and Verifier for F' + Circuit(V_A)

Application 4: SNARK composition

Goal: Combining SNARKs with different tradeoffs

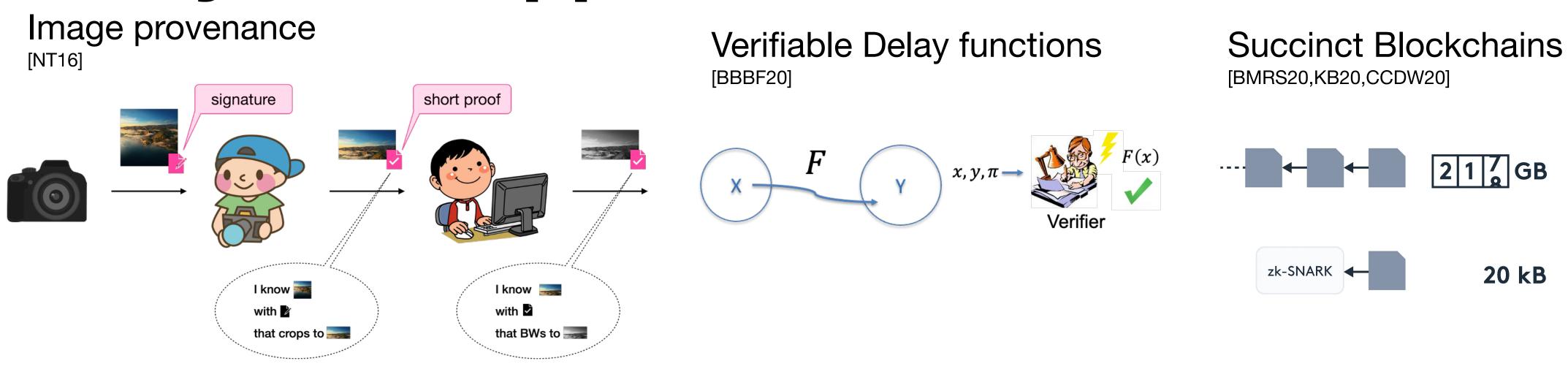
- Fast Prover
 Slow Prover
- "Slow" Verifier Fast Verifier
- "Large" Proofs Small Proofs
 - Zero-Knowledge
- Fast Prover
- Fast Verifier
- Small Proofs
- Zero-Knowledge

Solution: Use SNARK B to prove correctness of SNARK A

Prover runtime: P_A on $|F| + P_B$ on $Circuit(V_A)$

Verifier: V_B , Proof size: π_B

Many more applications

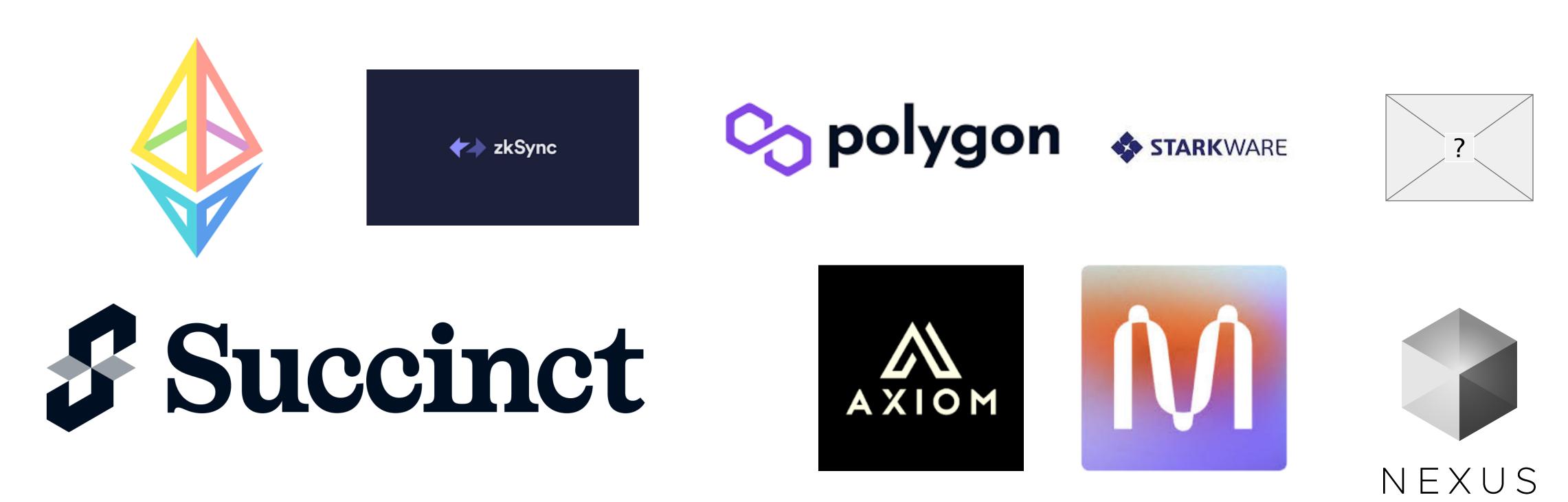


- Byzantine agreement [BCG20]
- ZK cluster computing [CTV15]
- Enforcing language semantics across trust boundaries [CTV13]
- Private smart contracts[BCCGMW18]
- Signature aggregation [KZHB25]

•

Real world deployments

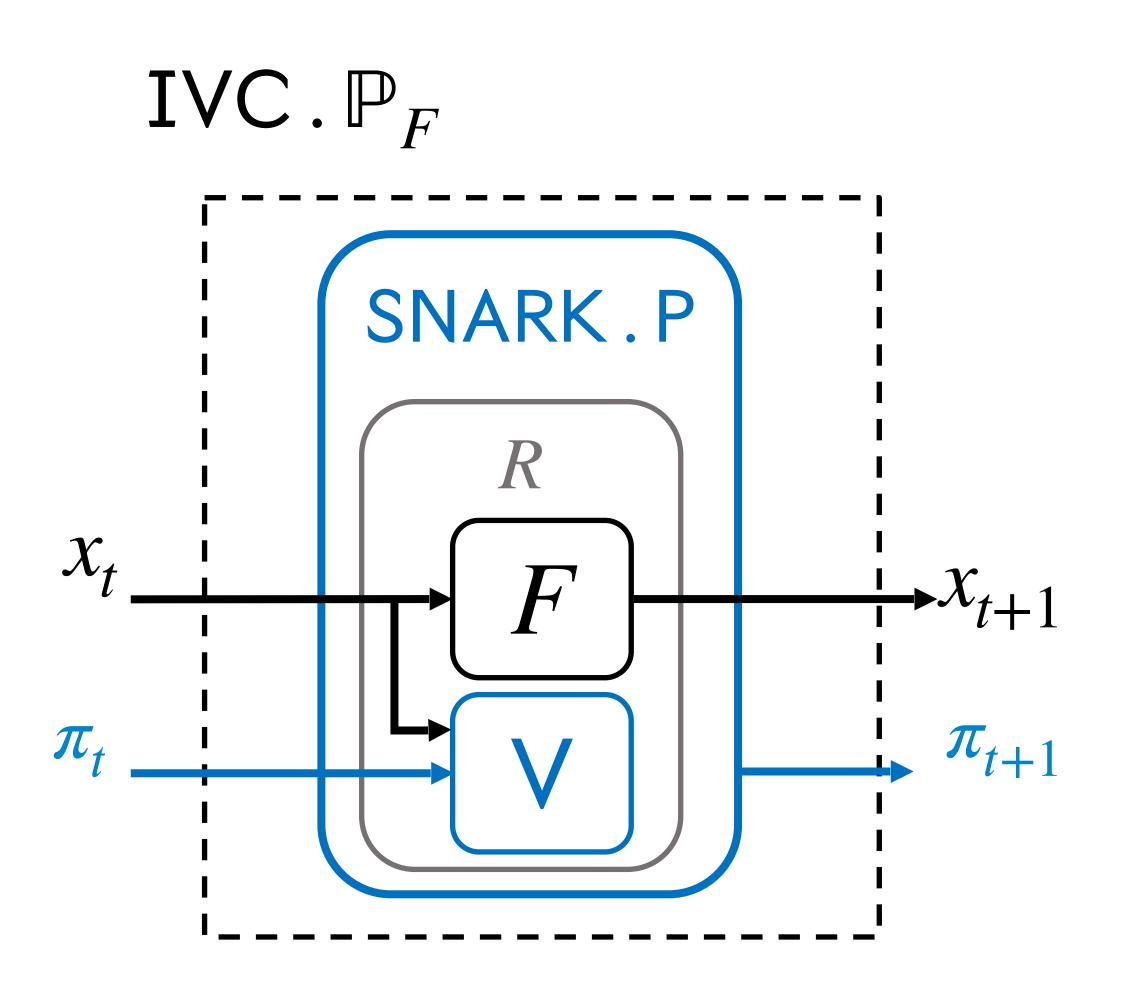
Recursive proofs are widely deployed!



Vital to understand their security and improve constructions!

Security analysis and problems

Security issues: Arithmetizing V

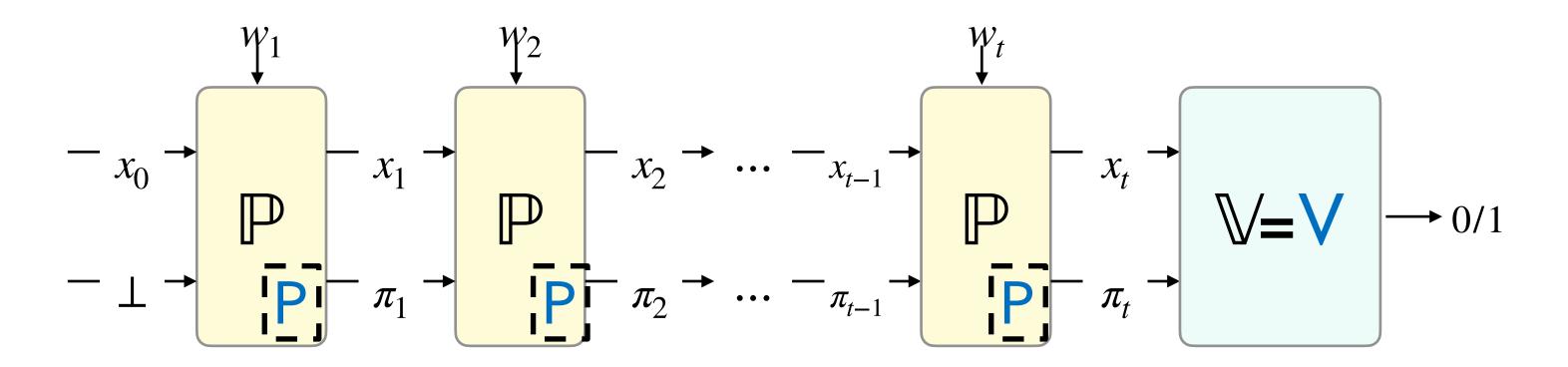


- R contains $V \Longrightarrow V$ can't contain oracles
- We need to implement V as a circuit
- Security jump: (P^{ρ}, V^{ρ}) secure in the RO implies that $(V, P) = Fiat\text{-}Shamir(P^{\rho}, V^{\rho})$ is secure in the standard (CRS) model.
- Generically not true[CGH98,Bar01,GK03]
- Recent attack on GKR[KRS25]
 - Attack relies on evaluating FS-Hash inside proof system
 - Recursion relies on this ability

Security issues: Arithmetizing V

- Attempt 1: Build SNARK in the RO that proves statement about the RO?
 - Impossible [BCG24]
- Attempt 2: Extend RO model to enable end-to-end analysis of PCD
 - Early attempts required secure hardware [CT10,CCS22]
 - Arithmetized Random Oracle Model [CCGOS23] augments the random oracle with an additional arithmetization oracle. Heuristically, the RO is replaced with SHA256, and the arithmetization with a circuit of SHA256.
 - AROM suffices to build PCD
 - But FS-attacks are not captured by the AROM (The insecure SNARK is still secure)
- Open problem: Build model that is sufficient to capture attacks but enables end-toend PCD construction (candidates [Zha22,AY25])

Security Issues: Extraction

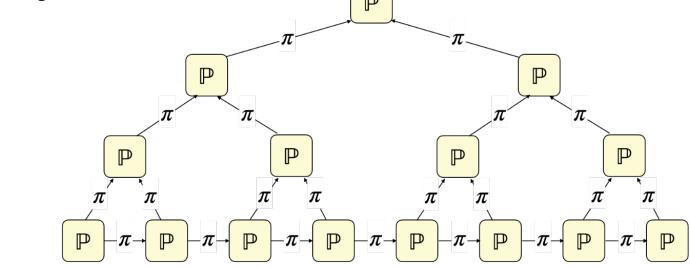


- IVC extractor calls the SNARK extractor using (π_t, x_t) to extract $\pi_{t-1}, x_{t-1}, w_{t-1}$
- To extract from an internal SNARK (e.g. for step 2) we need to simulate a prover P
 for that SNARK.
- Idea: P's proofs are generated by invoking the extractor for the outer SNARKs
- **Problem**: each extractor can invoke each \tilde{P} up to poly(λ) times
- Thus the runtime of the extractor is $poly(\lambda)^{depth} \implies depth$ must be **constant**

Security Issues: Extraction

Constant-depth IVC/PCD only and with major security loss:/

- Old solution: **Decrease depth** [всст13]
 - Use tree-based IVC



- With λ arity and constant depth we can support $poly(\lambda)$ IVC steps
- Still high security loss
- Practitioner's solution:
 - Don't do anything
 - Assume $\epsilon_{\rm IVC} pprox \epsilon_{\rm SNARK}$ (Soundness error of IVC is independent of depth)
 - No matching attack

Saving grace: Straightline extraction

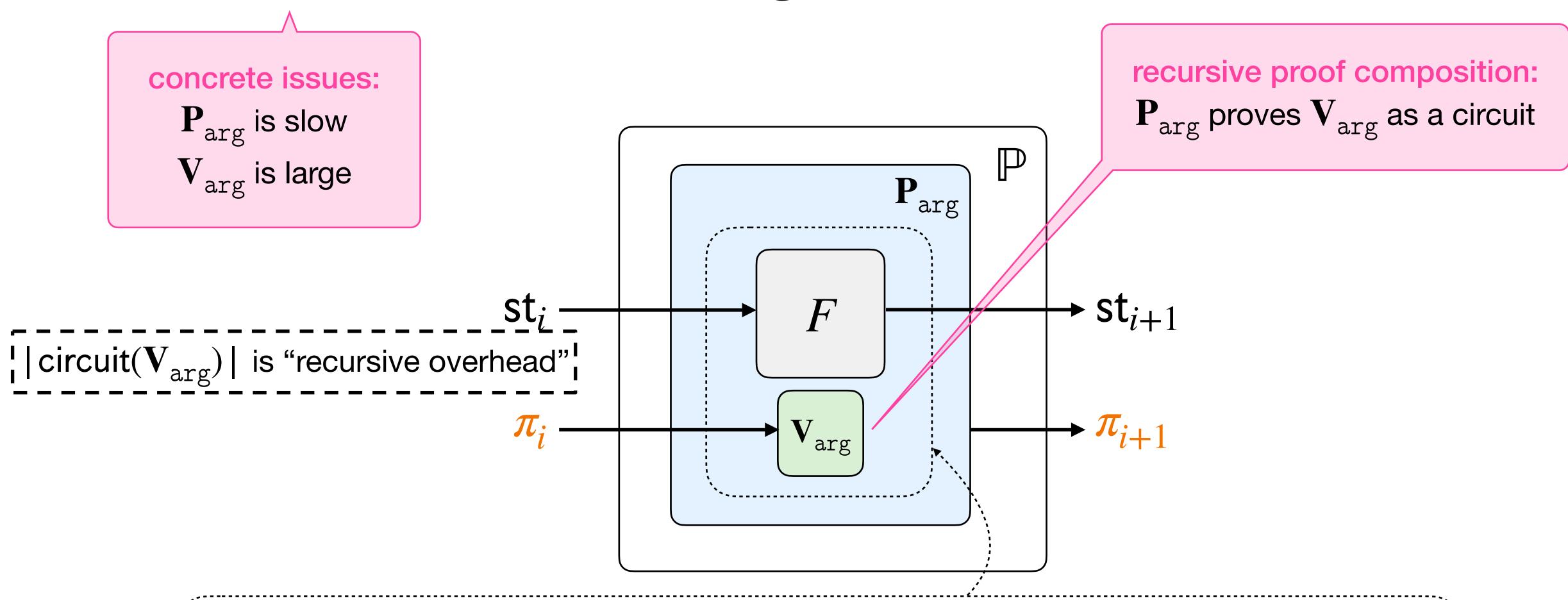
- Assume the SNARK has a straight line (deterministic, one-shot) extractor
 - Then we don't get the exponential blowup (each extractor is called once)
 - Union bound: depth $\cdot \epsilon_{\text{SNARK}}$ [CT10,CCGOS23]
 - Recently improved to $\epsilon_{\text{PCD}} \approx \epsilon_{\text{SNARK}}$ [CGSY23]
- Problem 1: Only able to construct straight-line extraction in idealized models
 - Heuristic assumption: straightline extraction in idealized model
 - straightline extractor for real-wold instantiation
- Problem 2: Some SNARKs of interest don't have straightline extractors
 - Example: SNARKs from non efficiently decodable codes.
 - Recent progress [RT24,BCFW25]
 - Straightline extraction (in ideal model) should become the norm for SNARKs

Open security problems

- Build IVC/PCD in standard model (see Surya's talk on Thursday)
- Build a model that captures Fiat-Shamir attacks but enables proving security of known SNARK/PCD constructions
- Attacks against high-depth IVC/PCD (even contrived)
- "Straightline extraction" in standard CRS model (or similar condition)
- Proving straightline extraction for more protocols

Efficiency (concerns)

IVC from succinct arguments



"there exists st_i with a valid proof π_i such that $\operatorname{st}_{i+1} = F(\operatorname{st}_i)$ "

Recursive overhead is a bottleneck

Goal: Improving SNARK prover properties

SNARK A'

- Fast sequential Prover
- Non parallel
- Large memory
- Large CRS
- Large verifier

- Fast parallel Prover
- Constant memory
- Constant CRS
- Constant size verifier

Solution: Break up function F into T uniform steps F' of size $\frac{|T|}{T}$

- ullet Build binary PCD tree of depth $\log(T)$ for predicate F'.
- T parallelism
- Memory, CRS and Verifier for F' + Circuit(V_A)

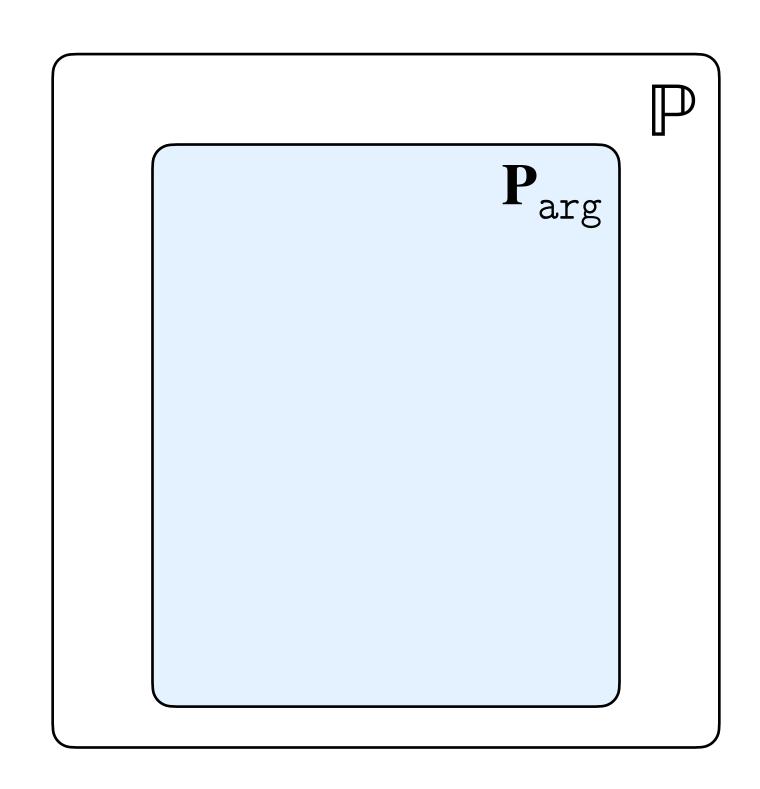
Smaller Circuit

U

Larger T

SNARK prover is a bottleneck

- PCD prover runs SNARK prover
- SNARK provers have large constants
- Many SNARKs have strong assumptions
 - E.g. SNARKs in DLOG groups
- Most efficient SNARKs have large proofs
 - Linear-time SNARKs have MB sized proofs
 - Leads to large recursive overheads



Are SNARKs necessary to build IVC/PCD*?

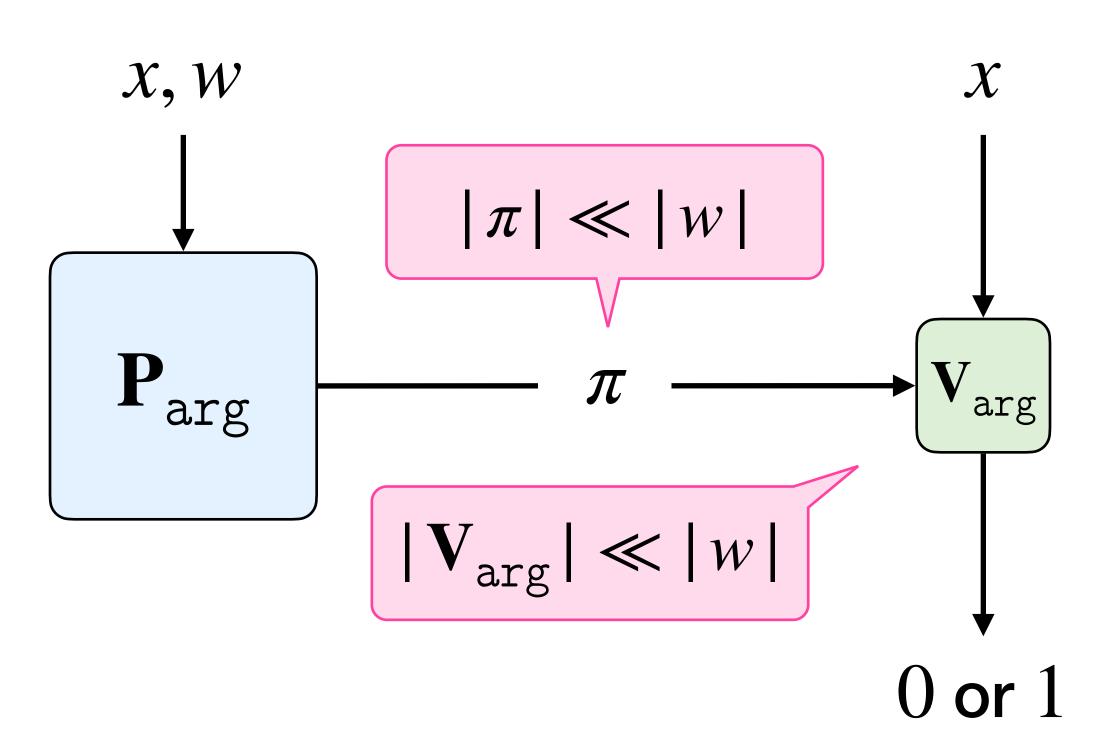
*No for IVC for P [DGKV22, PP23]

Accumulation Schemes

Review: SNARGs

succinct non-interactive arguments

$$(x, w) \in_{?} R$$



completeness

if
$$(x, w) \in R$$

then $\mathbf{V}_{arg} \to 1$

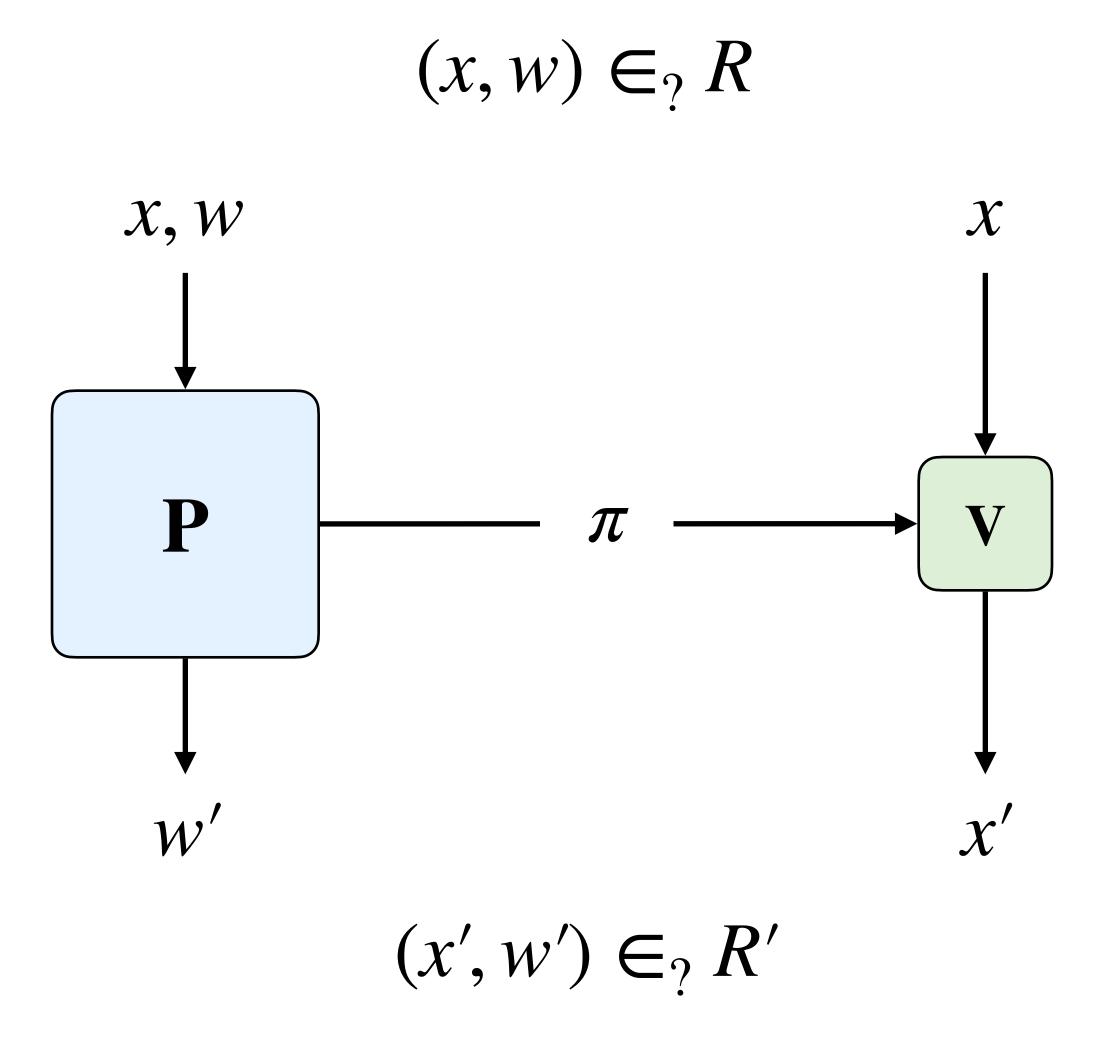
$$L(R) := \{x : \exists w, (x, w) \in R\}$$

soundness

$$\label{eq:local_local_local} \text{if } x \not\in L(R)$$
 then w.h.p. $\mathbf{V}_{\mathrm{arg}} \to 0$

in general: knowledge soundness

Background: reductions [KP22]



completeness

if
$$(x, w) \in R$$

then $(x', w') \in R'$

soundness

if
$$x \notin L(R)$$

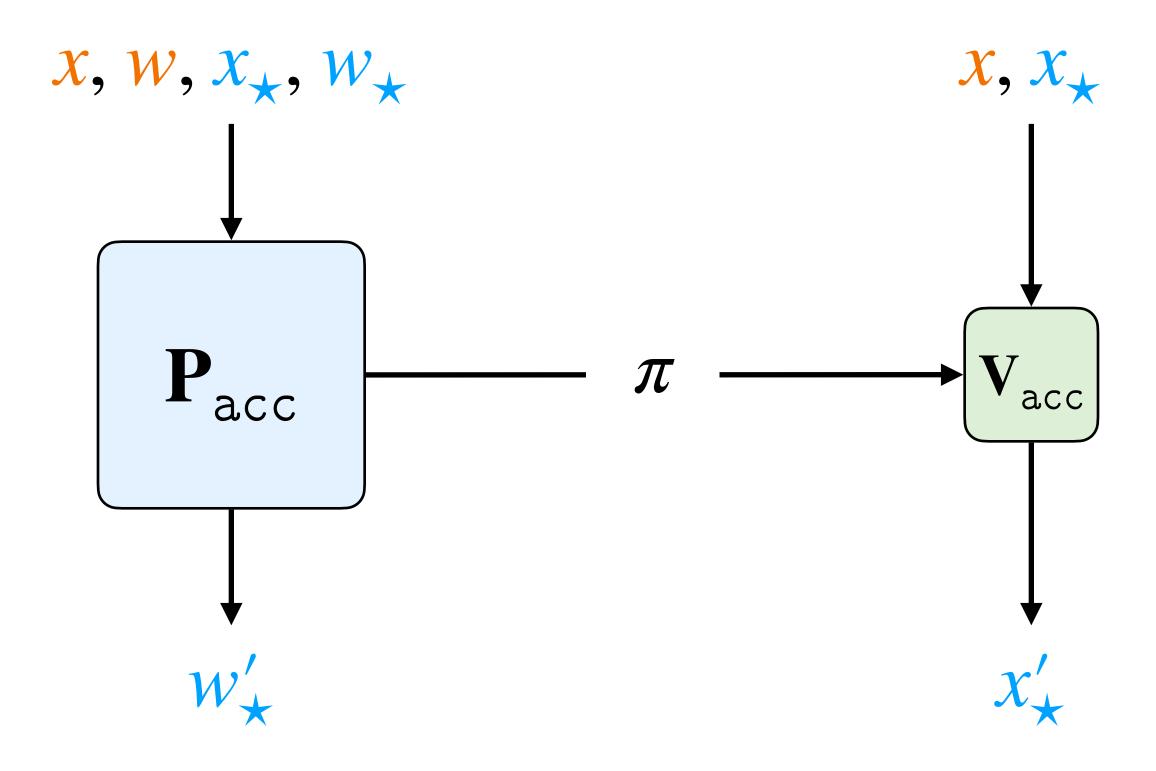
then w.h.p. $x' \notin L(R')$

in general: knowledge soundness

Accumulation schemes

[BGH19,BCMS20,BCLMS21,KST22]

$$(x, w) \in_{?} R \land (x_{\star}, w_{\star}) \in_{?} R_{\star}$$

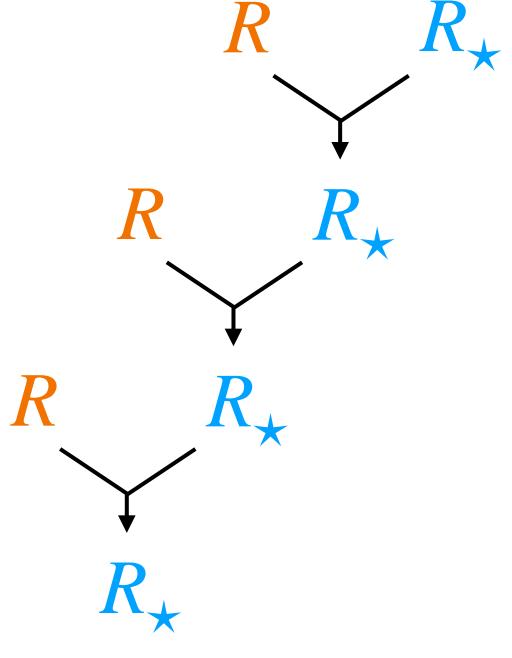


 $(x_{\star}', w_{\star}') \in_{?} R_{\star}$

in general: $R^n \times R^m_\star \to R_\star$

accumulation scheme for R:

reduction from $R \times R_{\star}$ to R_{\star}



more precisely, a split accumulation (or folding) scheme [BCLMS21], [KST22]

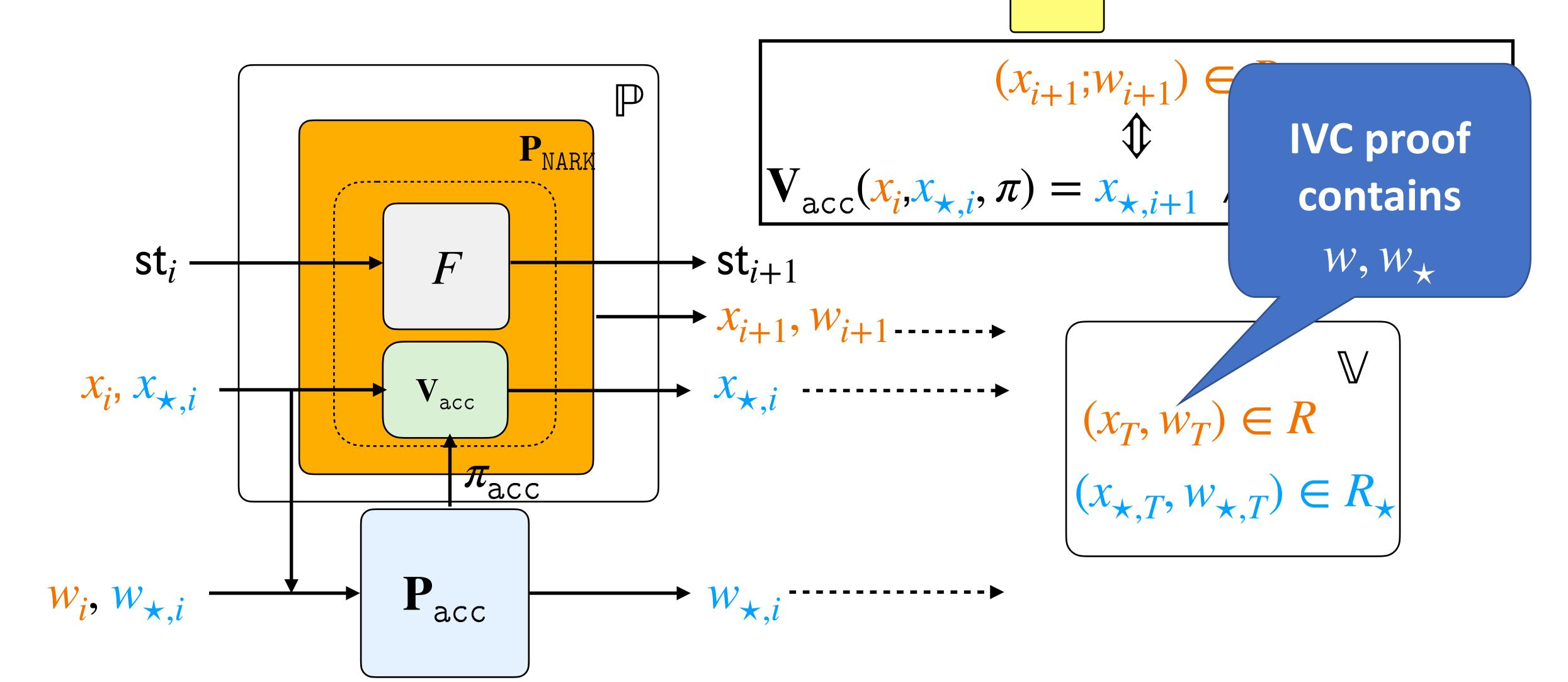
weaker than an argument for R!

IVC from accumulation [BCLMS20]

outputs $(x, w) \in R$

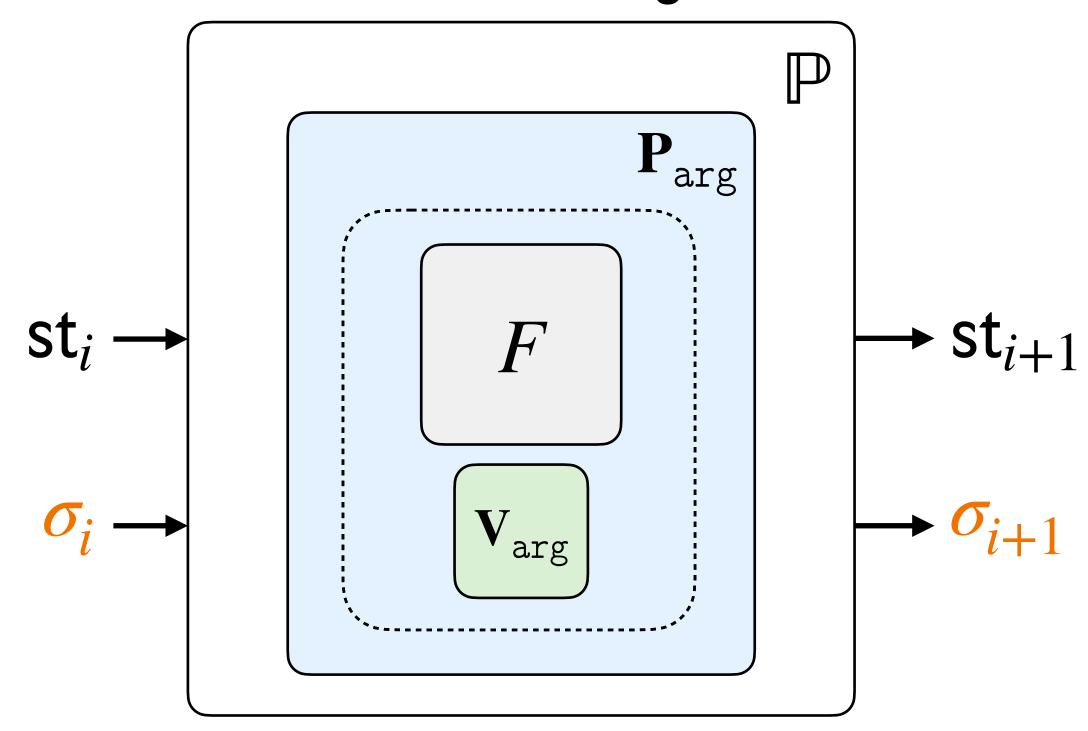
VNARK

checks $(x, w) \in R$



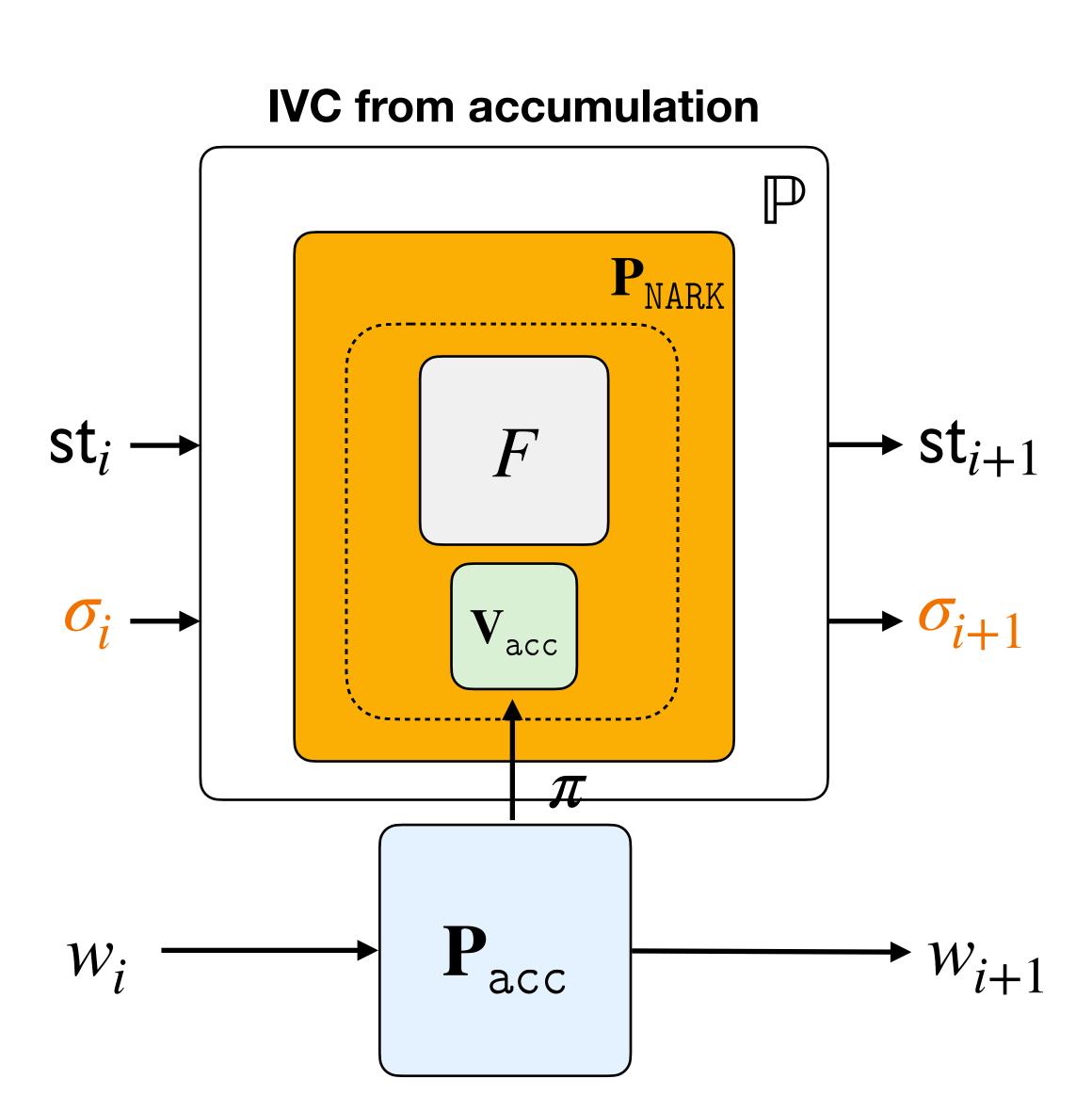
Why accumulate?

IVC from succinct arguments



 $\mathbf{P}_{\text{acc}} + \mathbf{P}_{\text{NARK}}$ can be faster than \mathbf{P}_{arg}

 V_{acc} can be smaller than V_{arg}



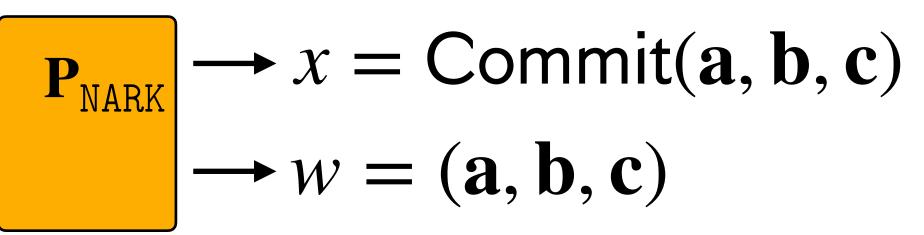
Accumulation and SNARKs

- Accumulation is simpler than SNARKs
 - We can construct it in settings and with efficiencies that don't admit SNARKs
- Accumulation suffices to build IVC/PCD
- IVC/PCD enables building SNARKs
 - Set F to be a step function of a VM
- How can this be?
 - All known "interesting" accumulation schemes require random oracles
 - To build IVC/PCD we need accumulation in standard models (heuristic jump)

Building Accumulation: Whiteboard

Accumulation is "easy" [BCLMS21,

Check: a, b, c s.t. $\mathbf{a}_i + \mathbf{b}_i = \mathbf{c}_i \in \mathbb{F}$ for all $i \in [n]$ V_{acc}



 $\alpha \leftarrow \mathbb{F}$

Non-interactivity through Fiat-Shamir

 $(a, w) \in R$: $(a, \mathbf{b}, \mathbf{c}) \land \mathbf{a} + \mathbf{b} - \mathbf{c} = \mathbf{0}$

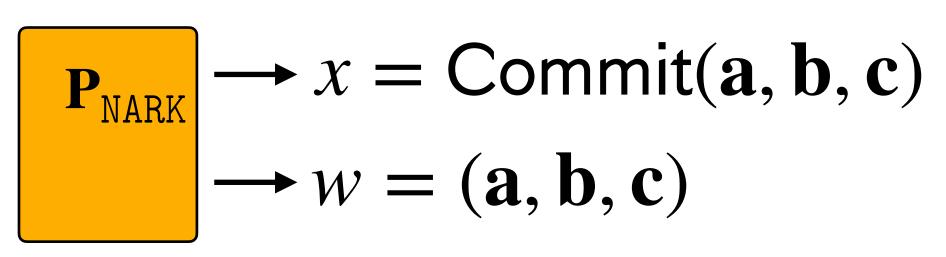
$$(x'', w'') \leftarrow (x, w) + \alpha \cdot (x', w')$$

Commit can be built from DLOG Commit(w) + Commit(w') = Commit(w + w')

$$(x, w) \in R, (x, w') \in R \Rightarrow (x, w) + Y \cdot (x', w') \in R$$

Accumulation is "easy" [BCLMS21, KST22]

Check: a, b, c s.t. $\mathbf{a}_i \cdot \mathbf{b}_i = \mathbf{c}_i \in \mathbb{F}$ for all $i \in [n]$ $\mathbf{P}_{\text{NARK}} \longrightarrow x = \text{Commit}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ V_{acc}



$$(x, w) \in R:$$

$$\{x = \text{Commit}(\mathbf{a}, \mathbf{b}, \mathbf{c}) \land \mathbf{a} \circ \mathbf{b} - \mathbf{c} = \mathbf{0}\}$$

$$x'' \leftarrow x + \alpha \cdot x' | \mathsf{ct}$$

$$w'' \leftarrow w + \alpha \cdot w'$$

$$x'', w'' \in R_{\star}$$

$$(x, w) \in R_{\star}$$
:
$$\{x = \text{Commit}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \text{ct}) \land \mathbf{a} \circ \mathbf{b} - \mathbf{c} = \text{ct}\}$$

$$(x, w) \in R, (x, w') \in R \Rightarrow (x'', w'') \in R$$
but
$$(\mathbf{a} + Y \cdot \mathbf{a}') \circ (\mathbf{b} + Y \cdot \mathbf{b}') = \mathbf{c} + Y^2 \cdot \mathbf{c}' + Y \cdot \mathbf{c}t$$

Accumulation for multiplication

- Reduction from $R \times R \to R_{\star}$
- Reduction from $R \times R_{\star} \to R_{\star}$ is very similar!
- Multiplication and addition suffice to build accumulation for NP
- Only cryptography needed is a homomorphic vector commitment + Fiat-Shamir
 - No PCPs
 - No polynomial commitments
 - No trusted setup
 - Single commitment
- Acc verifier does 2 group scalar multiplications (check homomorphism)
 - Needs to check elliptic curve operations
 - In practice: Use cycles of elliptic curves for efficiency (mismatched fields)

A universe of accumulation

- Lowering recursion overhead [KotSetSzi22, KotSet23, BünChe23, DimGarManVla24, Bün24]
 - Down to only one scalar multiplication
 - less than 10k gates vs. 100k+ gates for SNARKs
- Multi-instance proving (for PCD)[KotSet23,EagGab23]
- Supporting high degree gates [Moh22, KotSet23, BC23]
- Faster prover[KotSet24]
- Handling cycles of elliptic curves[KotSet23b]
- Zero-Knowlege support [ZheGaoGuoXia23]
- Memory operations [BC24,AruSet24]
- Outsourcing verification [ZSCZ25]
- Smaller accumulators [BGH19,BF24,KZHB25]
- Non-uniformity[KS22,BC23,KZHB25]
- Parallel SNARK constructions [NDTCB24]

Post-quantum accumulation

- Accumulation verifier needs to check $\overline{w}' \stackrel{?}{=} \overline{w} + \alpha \cdot \overline{z}$
- Accumulation scheme require homomorphic vector commitment
 - Pedersen commitment is built from the DLOG assumption
 - Not post-quantum
- Goal: Get rid of the homomorphism

Lattice-based accumulation

SIS-commitment

- Only limited homomorphism
- Idea: Resplit witness and combine low-norm components [BC24]
- Multiple improvements [GKNP24,BC25,SN25] (See Binyi's talk)
- Larger recursion overhead than EC-based, but possibly very fast prover

Can we build accumulation in the RO?

- No additional assumptions
- Trivial answer: Yes, SNARKs imply accumlation
- Can we do better?

Homomorphic accumulation

Check: a, b, c s.t.
$$\mathbf{a}_i + \mathbf{b}_i = \mathbf{c}_i \in \mathbb{F}$$
 for all $i \in [n]$ PNARK V_{acc}

$$(x, w) \in R :$$

$$\{x = \text{Commit}(\mathbf{a}, \mathbf{b}, \mathbf{c}) \land \mathbf{a} + \mathbf{b} - \mathbf{c} = \mathbf{0}\}$$

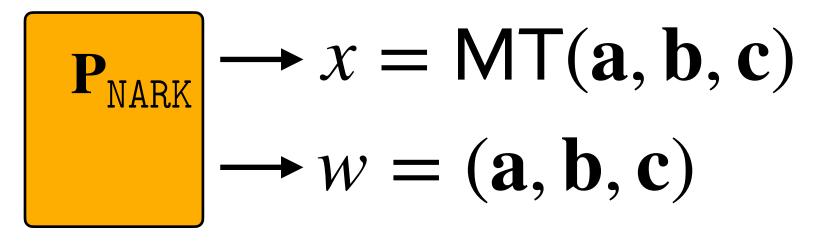
$$(x'', w'') \leftarrow (x, w) + \alpha \cdot (x', w')$$

Commit can be built from DLOG Commit(w) + Commit(w') = Commit(w + w')

$$(x, w) \in R, (x, w') \in R \Rightarrow (x, w) + Y \cdot (x', w') \in R$$

Non-Homomorphic accumulation

Check: **a**, **b**, **c** s.t.
$$\mathbf{a}_i + \mathbf{b}_i = \mathbf{c}_i \in \mathbb{F}$$
 for all $i \in [n]$ $V_{\text{acc}} \longrightarrow w = (\mathbf{a}, \mathbf{b}, \mathbf{c})$



$$\alpha \leftarrow \mathbb{F}$$

$$(x, w) \in R$$
:
 $\{x = \mathsf{MT}(\mathbf{a}, \mathbf{b}, \mathbf{c}) \land \mathbf{a} + \mathbf{b} - \mathbf{c} = \mathbf{0}\}$

$$(x'', w'') \leftarrow (x, w) + \alpha \cdot (x', w')$$

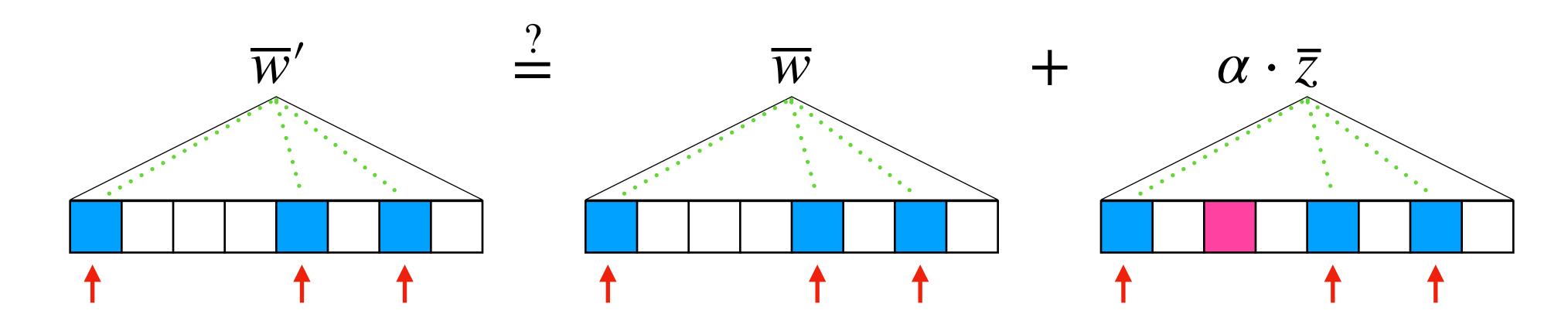
 $V_{\rm a.c.c}$ can't check this operation anymore

$$(x, w) \in R, (x, w') \in R \Rightarrow (x, w) + Y \cdot (x', w') \in R$$

Checking the homomorphism



Checking the homomorphism



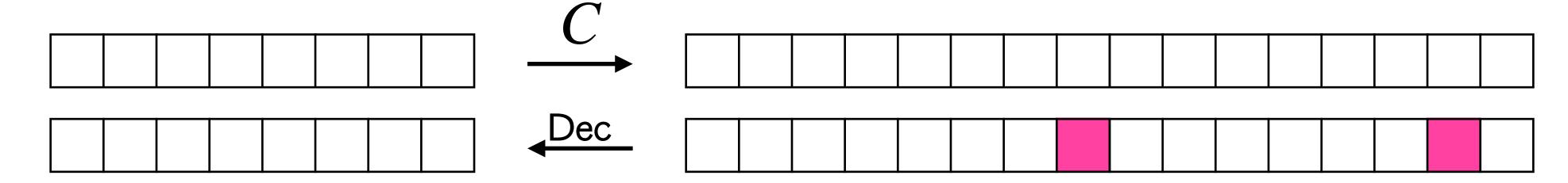
- Suppose δ -fraction of locations are inconsistent
- Then t queries miss w.p. $(1 \delta)^t$

$$t = \frac{\lambda}{\delta} \implies (1 - \delta)^t \le 2^{-\lambda}$$

Problem: How to detect a single inconsistency?

New tool: linear codes

- Linear map $C: \mathbb{F}^n \to \mathbb{F}^\ell$ from "messages" to "codewords"
- Distance: minimum relative Hamming distance between any two codewords
- Decoding: given a noisy codeword, recover the original message



- Unique decoding radius = maximum number of errors allowed
- We want a linear code with large distance/decoding radius, e.g. Reed– Solomon codes

Attempt 1: Spotchecks [BMNW24]

Check: a, b, c s.t.
$$\mathbf{a}_i + \mathbf{b}_i = \mathbf{c}_i \in \mathbb{F}$$
 for all $i \in [n]$ \mathbf{P}_{NARK}

Pacc

$$V_{\mathsf{acc}}$$

$$\alpha \leftarrow \mathbb{F}$$

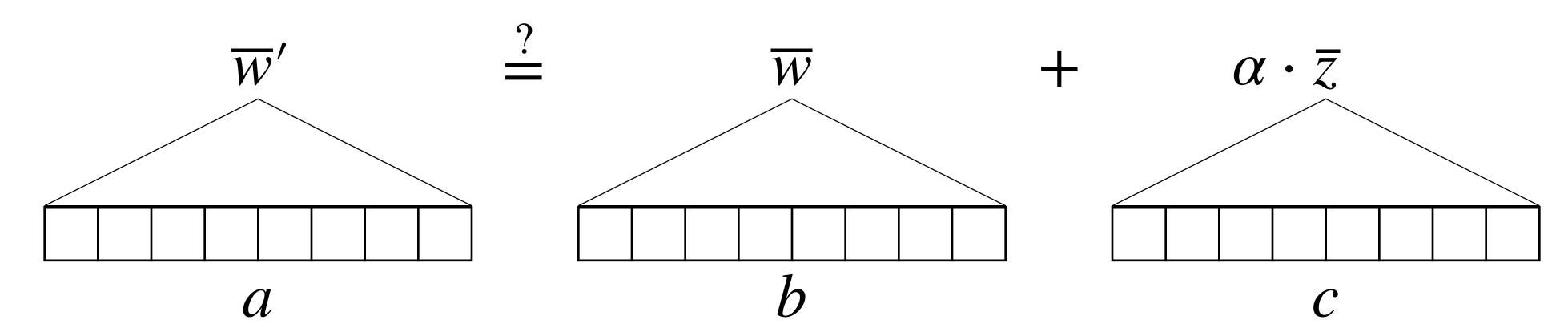
$$(x, w) \in R$$
:
$$\{x = \mathsf{MT}(C(\mathbf{a}, \mathbf{b}, \mathbf{c})) \land \mathbf{a} + \mathbf{b} - \mathbf{c} = \mathbf{0}\}$$

$$(x'', w'') \leftarrow (x, w) + \alpha \cdot (x', w')$$

Use linear code C
Check homomorphism at
Random spots

$$(x, w) \in R, (x, w') \in R \Rightarrow (x, w) + Y \cdot (x', w') \in R$$

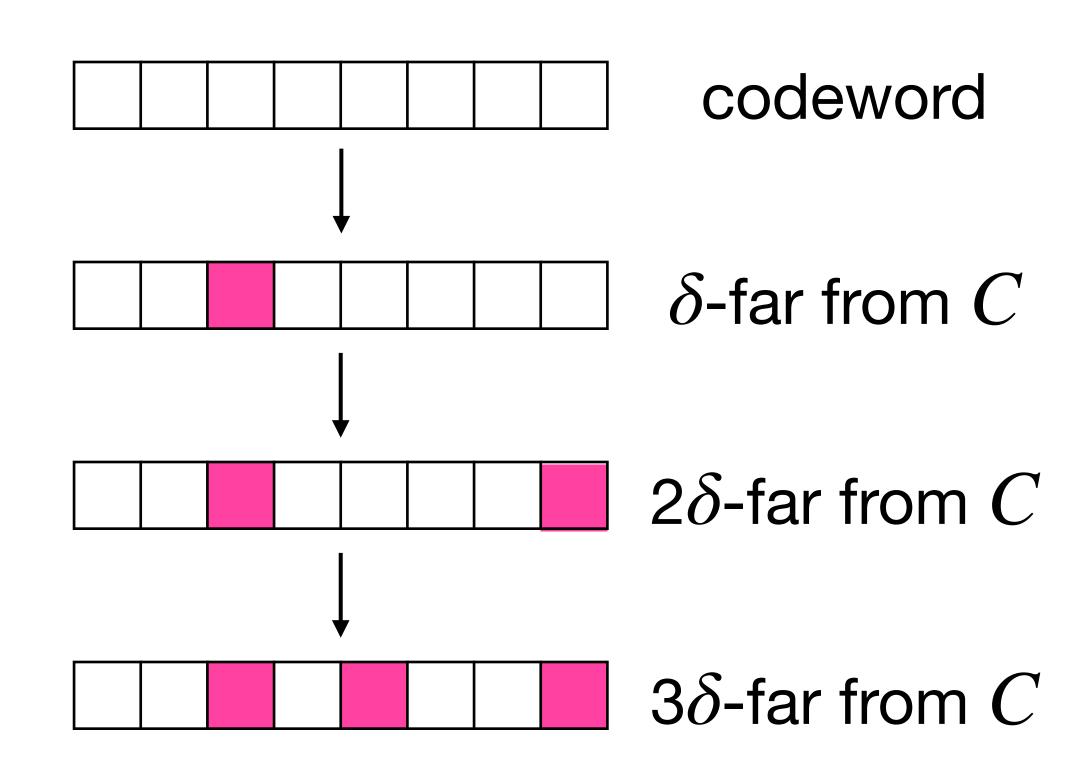
Soundness analysis



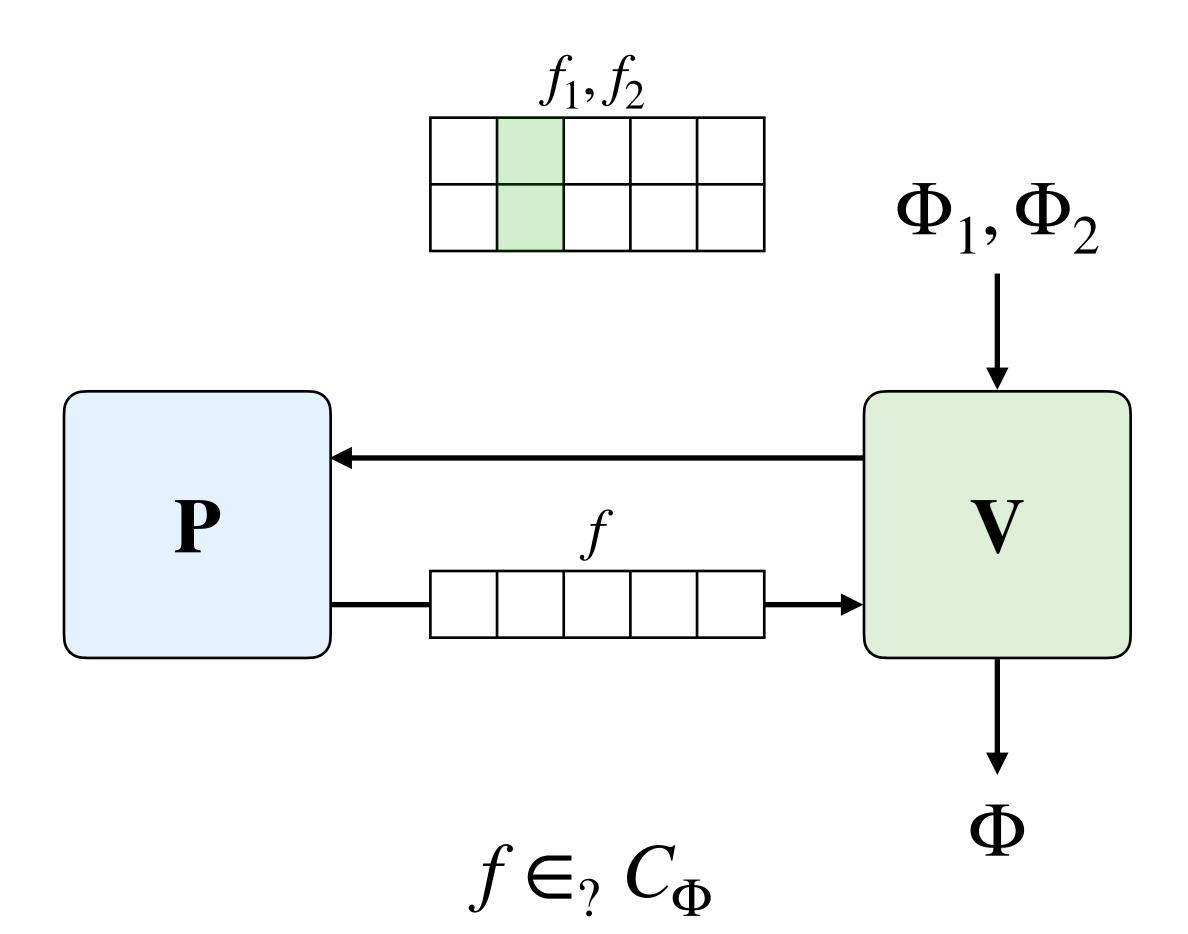
- Decider guarantees: $a \in C$
- Verifier guarantees: $\Delta(a,b+\alpha c)<\delta \implies b+\alpha c$ is δ -close to C
- b are c are δ -close to C (by proximity gap for C: BCIKS23, RVW13, AHIV17, DP23a)
- \Longrightarrow $Dec(a) = Dec(b) + \alpha \cdot Dec(c)$
 - "Proof": Encode both sides, they are 3δ -close \rightarrow equal (assuming 3δ < distance)

Accumulating multiple times

- To support *d* accumulations:
 - Spot check parameter δ
 - $d\delta$ < unique decoding radius
- Matching attack



Solution: Use constrained codes [BMNW24,KNS24,Szep24,BCFW25]



Any linear code $C: \mathbb{F}^k \to \mathbb{F}^n$

Any "low-degree polynomial" constraint $\Phi: \mathbb{F}^k \to \mathbb{F}$

Constrained code

$$C_{\Phi} := \{ C(v) : \Phi(v) = 0 \}$$

Accumulation from constrained codes

- ullet Prover sends new claimed codeword f
- Verifier queries f_1, f_2 at random locations
- Constrain f given the query responses from f_1, f_2

Lemma: If
$$\Delta(f_1,C_\phi)>\delta\vee\Delta(f_2,C_\phi)>\delta\Longrightarrow_{\text{w.h.p}}\Delta(f,C_\phi)>\delta$$

More details: William's talk

Accumulation for linear codes[BCPFW25,BMMS25]

- Accumulation for any linear code with essentially optimal parameters
 - Accumulation verifier does $O(\lambda)$ oracle queries (MT paths after compilation)
 - Not known for SNARKs
 - Linear time prover (for large fields)
 - Up to list-decoding radius
- Straightline extraction without efficient decoding
- Direct accumulation for NP
 - No need to go through PIOPs

Constructions open questions

- Linear time accumulation for small fields (binary even)
 - Easier than the related SNARK question
- Linear time accumulation from lattices
 - Smaller acc verifier than hash-based schemes
- Accumulation without random oracles
 - Would yield PCD and SNARK in the standard model
 - Minimal assumptions needed?
- Smaller accumulator size
 - acc. w needs to be forwarded as part of the PCD
 - For all post-quantum constructions $|acc| = \Theta(|F|)$. High communication
 - Can we do better?

Recursive proofs are powerful but can be built from simple assumptions*

Thank you

Citations (general)

- [Val08] Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/ Space Efficiency
- [CT10] Proof-Carrying Data and Hearsay Arguments from Signature Cards
- [BCCT13] Recursive Composition and Bootstrapping for SNARKs and Proof-Carrying Data
- [COS20] Fractal: Post-Quantum and Transparent Recursive Proofs from Holography
- [KP22] Algebraic Reductions of Knowledge
- [DGKV22] Rate-1 non-interactive arguments for batch-NP and applications
- [PP23] Incrementally Verifiable Computation via Rate-1 Batch Arguments

Citations (applications)

- [CTV13] Enforcing Language Semantics Using Proof-Carrying Data
- [CTV15] Cluster Computing in Zero Knowledge
- [NT16] PhotoProof: Cryptographic Image Authentication for Any Set of Permissible Transformations
- [BCCGMW18] Zexe: Enabling Decentralized Private Computation
- [BCG20] Breaking the O(√n)-Bit Barrier: Byzantine Agreement with Polylog Bits Per Party
- [KB20] Proof of Necessary Work: Succinct State Verification with Fairness Guarantee
- [BMRS20] Coda: Decentralized Cryptocurrency at Scale
- [BBBF20] Verifiable Delay Functions
- [CCDW20] Reducing Participation Costs via Incremental Verification for Ledger Systems
- [KB20] Proof of Necessary Work: Succinct State Verification with Fairness Guarantees

Citations (security)

- [CGH98] The Random Oracle Methodology Revisited
- [Bar01] How to go beyond the black-box simulation barrier
- [GK03] On the (In)security of the Fiat-Shamir Paradigm
- [CCS22] On succinct non-interactive arguments in relativized worlds
- [Zhandry22] Augmented Random Oracles
- [CCGOS23] Proof-Carrying Data From Arithmetized Random Oracles
- [CGSY23] Security Bounds for Proof-Carrying Data from Straightline Extractors
- [BCG24] Relativized Succinct Arguments in the ROM Do Not Exist
- [RT24] Straight-Line Knowledge Extraction for Multi-Round Protocols
- [KRS25] How to Prove False Statements: Practical Attacks on Fiat-Shamir
- [AY25] Towards a White-Box Secure Fiat-Shamir Transformation

Citations (accumulation)

- [BGH19] Halo: Recursive Proof Composition without a Trusted Setup
- [BCMS20] Recursive Proof Composition from Accumulation Schemes
- [BCLMS21] Proof-Carrying Data Without Succinct Arguments
- [KST22] Nova: Recursive Zero-Knowledge Arguments from Folding Schemes
- [Moh22] Sangria
- [KS22] SuperNova
- [KotSet23] HyperNova
- [BC23] Protostar: Generic Efficient Accumulation/Folding for Special-Sound Protocols
- [EatGab23] Protogalaxy
- [KotSet23b] Cyclefold
- [ZheGaoGuoXia23] KiloNova
- [NBS23] Revisiting the Nova Proof System on a Cycle of Curves
- [BF24] Mira
- [DimGarManVla24] Mova
- [Bünz24] Ova
- [KotSet24] NeutronNova
- [BC24] Proofs for deep thought
- [BC24b] LatticeFold: A Lattice-based Folding Scheme and its Applications to Succinct Proof Systems
- [AruSet24] Nebula
- [NDCTB24] Mangrove: A Scalable Framework for Folding-Based SNARKs
- [LS24] On the Security of Nova Recursive Proof System
- [GKNP24] Lova
- [BMNW24] Accumulation without homomorphism
- [BC25] Latticefold+: Faster, Simpler, Shorter Lattice-Based Folding for Succinct Proof Systems
- [BCFW25] Linear-Time Accumulation Schemes
- [KZHB25] KZH-Fold: Accountable Voting from Sublinear Accumulation
- [ZSCZ25] MicroNova
- [SN25] Neo